Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 5.969
Filtrar
1.
Arch Microbiol ; 206(5): 217, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38619666

RESUMO

The rodent-borne Arenavirus in humans has led to the emergence of regional endemic situations and has deeply emerged into pandemic-causing viruses. Arenavirus have a bisegmented ambisense RNA that produces four proteins: glycoprotein, nucleocapsid, RdRp and Z protein. The peptide-based vaccine targets the glycoprotein of the virus encountered by the immune system. Screening of B-Cell and T-Cell epitopes was done based on their immunological properties like antigenicity, allergenicity, toxicity and anti-inflammatory properties were performed. Selected epitopes were then clustered and epitopes were stitched using linker sequences. The immunological and physico-chemical properties of the vaccine construct was checked and modelled structure was validated by a 2-step MD simulation. The thermostability of the vaccine was checked followed by the immune simulation to test the immunogenicity of the vaccine upon introduction into the body over the course of the next 100 days and codon optimization was performed. Finally a 443 amino acid long peptide vaccine was designed which could provide protection against several members of the mammarenavirus family in a variety of population worldwide as denoted by the epitope conservancy and population coverage analysis. This study of designing a peptide vaccine targeting the glycoprotein of mammarenavirues may help develop novel therapeutics in near future.


Assuntos
Arenaviridae , Vacinas , Humanos , Arenaviridae/genética , Vacinologia , Peptídeos , Epitopos/genética , Glicoproteínas
2.
Front Cell Infect Microbiol ; 14: 1346349, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38628551

RESUMO

Efficient precision vaccines against several highly pathogenic zoonotic viruses are currently lacking. Proteolytic activation is instrumental for a number of these viruses to gain host-cell entry and develop infectivity. For SARS-CoV-2, this process is enhanced by the insertion of a furin cleavage site at the junction of the spike protein S1/S2 subunits upstream of the metalloprotease TMPRSS2 common proteolytic site. Here, we describe a new approach based on specific epitopes selection from the region involved in proteolytic activation and infectivity for the engineering of precision candidate vaccinating antigens. This approach was developed through its application to the design of SARS-CoV-2 cross-variant candidates vaccinating antigens. It includes an in silico structural analysis of the viral region involved in infectivity, the identification of conserved immunogenic epitopes and the selection of those eliciting specific immune responses in infected people. The following step consists of engineering vaccinating antigens that carry the selected epitopes and mimic their 3D native structure. Using this approach, we demonstrated through a Covid-19 patient-centered study of a 500 patients' cohort, that the epitopes selected from SARS-CoV-2 protein S1/S2 junction elicited a neutralizing antibody response significantly associated with mild and asymptomatic COVID-19 (p<0.001), which strongly suggests protective immunity. Engineered antigens containing the SARS-CoV-2 selected epitopes and mimicking the native epitopes 3D structure generated neutralizing antibody response in mice. Our data show the potential of this combined computational and experimental approach for designing precision vaccines against viruses whose pathogenicity is contingent upon proteolytic activation.


Assuntos
COVID-19 , Vacinas Virais , Humanos , Animais , Camundongos , SARS-CoV-2/genética , COVID-19/prevenção & controle , Vacinas Virais/genética , Epitopos/genética , Anticorpos Neutralizantes , Anticorpos Antivirais
3.
J Virol ; 98(3): e0183823, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38426726

RESUMO

Nipah virus (NiV) is a highly lethal, zoonotic Henipavirus (HNV) that causes respiratory and neurological signs and symptoms in humans. Similar to other paramyxoviruses, HNVs mediate entry into host cells through the concerted actions of two surface glycoproteins: a receptor-binding protein (RBP) that mediates attachment and a fusion glycoprotein (F) that triggers fusion in an RBP-dependent manner. NiV uses ephrin-B2 (EFNB2) and ephrin-B3 (EFNB3) as entry receptors. Ghana virus (GhV), a novel HNV identified in a Ghanaian bat, uses EFNB2 but not EFNB3. In this study, we employ a structure-informed approach to identify receptor-interfacing residues and systematically introduce GhV-RBP residues into a NiV-RBP backbone to uncover the molecular determinants of EFNB3 usage. We reveal two regions that severely impair EFNB3 binding by NiV-RBP and EFNB3-mediated entry by NiV pseudotyped viral particles. Further analyses uncovered two-point mutations (NiVN557SGhV and NiVY581TGhV) pivotal for this phenotype. Moreover, we identify NiV interaction with Y120 of EFNB3 as important for the usage of this receptor. Beyond these EFNB3-related findings, we reveal two domains that restrict GhV binding of EFNB2, confirm the HNV-head as an immunodominant target for polyclonal and monoclonal antibodies, and describe putative epitopes for GhV- and NiV-specific monoclonal antibodies. Cumulatively, the work presented here generates useful reagents and tools that shed insight to residues important for NiV usage of EFNB3, reveal regions critical for GhV binding of EFNB2, and describe putative HNV antibody-binding epitopes. IMPORTANCE: Hendra virus and Nipah virus (NiV) are lethal, zoonotic Henipaviruses (HNVs) that cause respiratory and neurological clinical features in humans. Since their initial outbreaks in the 1990s, several novel HNVs have been discovered worldwide, including Ghana virus. Additionally, there is serological evidence of zoonotic transmission, lending way to concerns about future outbreaks. HNV infection of cells is mediated by the receptor-binding protein (RBP) and the Fusion protein (F). The work presented here identifies NiV RBP amino acids important for the usage of ephrin-B3 (EFNB3), a receptor highly expressed in neurons and predicted to be important for neurological clinical features caused by NiV. This study also characterizes epitopes recognized by antibodies against divergent HNV RBPs. Together, this sheds insight to amino acids critical for HNV receptor usage and antibody binding, which is valuable for future studies investigating determinants of viral pathogenesis and developing antibody therapies.


Assuntos
Infecções por Henipavirus , Henipavirus , Receptores Virais , Humanos , Aminoácidos/genética , Anticorpos Monoclonais/metabolismo , Proteínas de Transporte/metabolismo , Efrina-B3/genética , Efrina-B3/química , Efrina-B3/metabolismo , Epitopos/genética , Epitopos/metabolismo , Gana , Vírus Hendra/metabolismo , Henipavirus/classificação , Henipavirus/genética , Henipavirus/metabolismo , Mutagênese , Vírus Nipah/metabolismo , Proteínas do Envelope Viral/genética , Internalização do Vírus , Receptores Virais/metabolismo
4.
Sci Rep ; 14(1): 6763, 2024 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-38514707

RESUMO

The strongest genetic risk factor for rheumatoid arthritis (RA) has been known as HLA-DRB1 based on amino acid positions 11, 71, and 74. This study analyzed the association between specific HLA-DRB1 locus and treatment response to abatacept or TNF inhibitors (TNFi) in patients with seropositive RA. A total of 374 Korean RA patients were treated with abatacept (n = 110) or TNFi (n = 264). Associations between HLA-DRB1 and treatment response after 6 months were analyzed using multivariable logistic regression. Seropositive RA patients with HLA-DRB1 shared epitope (SE) had a favorable response to abatacept (OR = 3.67, P = 0.067) and an inversely associated response to TNFi (OR 0.57, P = 0.058) based on EULAR response criteria, but the difference was not statistically significant in comparison to those without SE. In analyses using amino acid positions of HLA-DRB1, a significant association was found between valine at amino acid position 11 of SE and good response to abatacept (OR = 6.46, P = 5.4 × 10-3). The VRA haplotype also showed a good response to abatacept (OR = 4.56, P = 0.013), but not to TNFi. Our results suggest that treatment response to abatacept or TNFi may differ depending on HLA-DRB1 locus in seropositive RA, providing valuable insights for selecting optimal therapy.


Assuntos
Artrite Reumatoide , Inibidores do Fator de Necrose Tumoral , Humanos , Abatacepte/farmacologia , Abatacepte/uso terapêutico , Abatacepte/genética , Cadeias HLA-DRB1/genética , Inibidores do Fator de Necrose Tumoral/uso terapêutico , Artrite Reumatoide/tratamento farmacológico , Artrite Reumatoide/genética , Epitopos/genética , Aminoácidos/genética , Alelos , Predisposição Genética para Doença
5.
Med Oncol ; 41(5): 90, 2024 Mar 24.
Artigo em Inglês | MEDLINE | ID: mdl-38522058

RESUMO

Pancreatic cancer is a highly aggressive and often lethal malignancy with limited treatment options. Its late-stage diagnosis and resistance to conventional therapies make it a significant challenge in oncology. Immunotherapy, particularly cancer vaccines, has emerged as a promising avenue for treating pancreatic cancer. Multi-epitope vaccines, designed to target multiple epitopes derived from various antigens associated with pancreatic cancer, have gained attention as potential candidates for improving therapeutic outcomes. In this study, we have explored transcriptomics and protein expression databases to identify potential upregulated proteins in pancreatic cancer cells. After examining a total of 21,054 proteins from various databases, it was discovered that 143 proteins expressed differently in malignant and healthy cells. The CTL, HTL and BCE epitopes were predicted for the shortlisted proteins. 51,840 vaccine constructs were created by concatenating CTL, HTL, and B-cell epitopes in the respective sequences. The best 86 structures were selected from a set of 51,840 designs after they were analyzed for vaxijenicity, allergenicity, toxicity, and antigenicity scores. In further simulation of the immune response using constructs, it was found that 41417, 37961, and 40841 constructs could produce a strong immune response when injected. Further, it was found that construct 37961 showed stronger interaction and stability with TLR-9 as determined from the large-scale molecular dynamics simulations. Moreover, the 37961 construct has shown interactions with TLR-9 suggests its potential in inducing immune response. In addition, construct 37961 has shown 100% predicted solubility in the E. coli expression system. Overall, the study indicates the designed construct 37961 has the potential to induce an anti-tumor immune response and long-standing protection pending further studies.


Assuntos
Vacinas Anticâncer , Neoplasias Pancreáticas , Humanos , Epitopos/genética , Proteoma , Escherichia coli , Receptor Toll-Like 9 , Neoplasias Pancreáticas/genética
6.
Cell Rep Med ; 5(3): 101445, 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38428429

RESUMO

The emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariants BA.2.86 and JN.1 raise concerns regarding their potential to evade immune surveillance and spread globally. Here, we test sera from rhesus macaques immunized with 3 doses of wild-type SARS-CoV-2 receptor-binding domain (RBD)-Fc adjuvanted with the STING agonist CF501. We find that the sera can potently neutralize pseudotyped XBB.1.5, XBB.1.16, CH.1.1, EG.5, BA.2.86, and JN.1, with 50% neutralization titers ranging from 3,494 to 7,424. We also demonstrate that CF501, but not Alum, can enhance immunogenicity of the RBD from wild-type SARS-CoV-2 to improve induction of broadly neutralizing antibodies (bnAbs) with binding specificity and activity similar to those of SA55, BN03, and S309, thus exhibiting extraordinary broad-spectrum neutralizing activity. Overall, the RBD from wild-type SARS-CoV-2 also contains conservative epitopes. The RBD-Fc adjuvanted by CF501 can elicit potent bnAbs against JN.1, BA.2.86, and other XBB subvariants. This strategy can be adopted to develop broad-spectrum vaccines to combat future emerging and reemerging viral infectious diseases.


Assuntos
COVID-19 , SARS-CoV-2 , Animais , SARS-CoV-2/genética , Anticorpos Amplamente Neutralizantes , Macaca mulatta , Epitopos/genética
7.
Biologicals ; 85: 101749, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38325003

RESUMO

Tick-borne pathogens increasingly threaten animal and human health as well as cause great economic loss in the livestock industry. Among these pathogens, Anaplasma ovis causing a decrease in meat and milk yield is frequently detected in sheep in many countries including Turkey. This study aimed to reveal potential vaccine candidate epitopes in Msp4 protein using sequence data from Anaplasma ovis isolates and then to design a multi-epitope protein to be used in vaccine formulations against Anaplasma ovis. For this purpose, Msp4 gene was sequenced from Anaplasma ovis isolates (n:6) detected in ticks collected from sheep in Turkey and the sequence data was compared with previous sequences from different countries in order to detect the variations of Msp4 gene/protein. Potential vaccine candidate and diagnostic epitopes were predicted using various immunoinformatics tools. Among the discovered vaccine candidate epitopes, antigenic and conserved were selected, and then a multi-epitope protein was designed. The designed vaccine protein was tested for the assessment of TLR-2, IgG, and IFN-g responses by molecular docking and immune simulation analyses. Among the discovered epitopes, EVASEGSGVM and YQFTPEISLV epitopes with properties of high antigenicity, non-allergenicity, and non-toxicity were proposed to be used for Anaplasma ovis in further serodiagnostic and vaccine studies.


Assuntos
Anaplasma ovis , Anaplasmose , Carrapatos , Humanos , Animais , Ovinos , Anaplasma ovis/genética , Anaplasmose/prevenção & controle , Epitopos/genética , Turquia , 60444 , Simulação de Acoplamento Molecular , Vacinas Sintéticas/genética , Filogenia
9.
J Biosci Bioeng ; 137(4): 321-328, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38342664

RESUMO

A novel, efficient and cost-effective approach for epitope identification of an antibody has been developed using a ribosome display platform. This platform, known as PURE ribosome display, utilizes an Escherichia coli-based reconstituted cell-free protein synthesis system (PURE system). It stabilizes the mRNA-ribosome-peptide complex via a ribosome-arrest peptide sequence. This system was complemented by next-generation sequencing (NGS) and an algorithm for analyzing binding epitopes. To showcase the effectiveness of this method, selection conditions were refined using the anti-PA tag monoclonal antibody with the PA tag peptide as a model. Subsequently, a random peptide library was constructed using 10 NNK triplet oligonucleotides via the PURE ribosome display. The resulting random peptide library-ribosome-mRNA complex was selected using a commercially available anti-HA (YPYDVPDYA) tag monoclonal antibody, followed by NGS and bioinformatic analysis. Our approach successfully identified the DVPDY sequence as an epitope within the hemagglutinin amino acid sequence, which was then experimentally validated. This platform provided a valuable tool for investigating continuous epitopes in antibodies.


Assuntos
Biblioteca de Peptídeos , Peptídeos , Mapeamento de Epitopos/métodos , Análise Custo-Benefício , Peptídeos/genética , Peptídeos/química , Anticorpos Monoclonais/genética , Epitopos/genética , Epitopos/química , Ribossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala , Biologia Computacional , RNA Mensageiro
10.
Microb Pathog ; 189: 106572, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38354987

RESUMO

The JCV (John Cunningham Virus) is known to cause progressive multifocal leukoencephalopathy, a condition that results in the formation of tumors. Symptoms of this condition such as sensory defects, cognitive dysfunction, muscle weakness, homonosapobia, difficulties with coordination, and aphasia. To date, there is no specific and effective treatment to completely cure or prevent John Cunningham polyomavirus infections. Since the best way to control the disease is vaccination. In this study, the immunoinformatic tools were used to predict the high immunogenic and non-allergenic B cells, helper T cells (HTL), and cytotoxic T cells (CTL) epitopes from capsid, major capsid, and T antigen proteins of JC virus to design the highly efficient subunit vaccines. The specific immunogenic linkers were used to link together the predicted epitopes and subjected to 3D modeling by using the Robetta server. MD simulation was used to confirm that the newly constructed vaccines are stable and properly fold. Additionally, the molecular docking approach revealed that the vaccines have a strong binding affinity with human TLR-7. The codon adaptation index (CAI) and GC content values verified that the constructed vaccines would be highly expressed in E. coli pET28a (+) plasmid. The immune simulation analysis indicated that the human immune system would have a strong response to the vaccines, with a high titer of IgM and IgG antibodies being produced. In conclusion, this study will provide a pre-clinical concept to construct an effective, highly antigenic, non-allergenic, and thermostable vaccine to combat the infection of the John Cunningham virus.


Assuntos
Vírus JC , Vacinas , Humanos , Epitopos/genética , Simulação de Acoplamento Molecular , Escherichia coli , Vacinologia , Vacinas de Subunidades/genética , Epitopos de Linfócito T/genética , Biologia Computacional , Epitopos de Linfócito B , Simulação de Dinâmica Molecular
11.
Protein Expr Purif ; 218: 106458, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38423156

RESUMO

Trypanosoma cruzi is the causative agent of Chagas disease, a global public health problem. New therapeutic drugs and biologics are needed. The TSA-1 recombinant protein of T. cruzi is one such promising antigen for developing a therapeutic vaccine. However, it is overexpressed in E. coli as inclusion bodies, requiring an additional refolding step. As an alternative, in this study, we propose the endogenous cysteine protease inhibitor chagasin as a molecular scaffold to generate chimeric proteins. These proteins will contain combinations of two of the five conserved epitopes (E1 to E5) of TSA-1 in the L4 and L6 chagasin loops. Twenty chimeras (Q1-Q20) were designed, and their solubility was predicted using bioinformatics tools. Nine chimeras with different degrees of solubility were selected and expressed in E. coli BL21 (DE3). Western blot assays with anti-6x-His and anti-chagasin antibodies confirmed the expression of soluble recombinant chimeras. Both theoretically and experimentally, the Q12 (E5-E3) chimera was the most soluble, and the Q20 (E4-E5) the most insoluble protein. Q4 (E5-E1) and Q8 (E5-E2) chimeras were classified as proteins with medium solubility that exhibited the highest yield in the soluble fraction. Notably, Q4 has a yield of 239 mg/L, well above the yield of recombinant chagasin (16.5 mg/L) expressed in a soluble form. The expression of the Q4 chimera was scaled up to a 7 L fermenter obtaining a yield of 490 mg/L. These data show that chagasin can serve as a molecular scaffold for the expression of TSA-1 epitopes in the form of soluble chimeras.


Assuntos
Proteínas de Membrana , Trypanosoma cruzi , Trypanosoma cruzi/genética , Cisteína Endopeptidases/metabolismo , Epitopos/genética , Epitopos/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo
12.
Int J Med Microbiol ; 314: 151607, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38367508

RESUMO

Measles is a highly contagious airborne viral disease. It can lead to serious complications and death and is preventable by vaccination. The live-attenuated measles vaccine (LAMV) derived from a measles virus (MV) isolated in 1954 has been in use globally for six decades and protects effectively by providing a durable humoral and cell-mediated immunity. Our study addresses the temporal stability of epitopes on the viral surface glycoprotein hemagglutinin (H) which is the major target of MV-neutralizing antibodies. We investigated the binding of seven vaccine-induced MV-H-specific monoclonal antibodies (mAbs) to cell-free synthesized MV-H proteins derived from the H gene sequences obtained from a lung specimen of a fatal case of measles pneumonia in 1912 and an isolate from a current case. The binding of four out of seven mAbs to the H protein of both MV strains provides evidence of epitopes that are stable for more than 100 years. The binding of the universally neutralizing mAbs RKI-MV-12b and RKI-MV-34c to the H protein of the 1912 MV suggests the long-term stability of highly conserved epitopes on the MV surface.


Assuntos
Vírus do Sarampo , Sarampo , Humanos , Vírus do Sarampo/genética , Anticorpos Neutralizantes , Testes de Neutralização , Vacina contra Sarampo/genética , Sarampo/prevenção & controle , Anticorpos Antivirais , Epitopos/genética , Hemaglutininas Virais/genética , Anticorpos Monoclonais
13.
Emerg Microbes Infect ; 13(1): 2315964, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38381980

RESUMO

Chagas Disease is an important neglected tropical disease caused by Trypanosoma cruzi. There is no gold standard for diagnosis and commercial serological tests perform poorly in certain locations. By aligning T. cruzi genomes covering parasite genetic and geographic diversity, we identified highly conserved proteins that could serve as universal antigens for improved diagnosis. Their antigenicity was tested in high-density peptide microarrays using well-characterized plasma samples, including samples presenting true infections but discordant serology. Individual and combination of epitopes were also evaluated in peptide-ELISAs. We identified >1400 highly conserved T. cruzi proteins evaluated in microarrays. Remarkably, T. cruzi positive controls had a different epitope recognition profile compared to serologically discordant samples. In particular, multiple T. cruzi antigens used in current tests and their strain-variants, and novel epitopes thought to be broadly antigenic failed to be recognized by discordant samples. Nonetheless, >2000 epitopes specifically recognized by IgGs from both positive controls and discordant samples were identified. Evaluation of selected peptides in ELISA further illustrated the extensive variation in antibody profiles among subjects and a peptide combination could outperform a commercial ELISA, increasing assay sensitivity from 52.3% to 72.7%. Individual variation in antibody profiles rather than T. cruzi diversity appears to be the main factor driving differences in serological diagnostic performance according to geography, which will be important to further elucidate. ELISA with a combination of peptides recognized by a greater number of individuals could better capture infections, and further development may lead to an optimal antigen mixture for a universal diagnostic assay.


Assuntos
Doença de Chagas , Trypanosoma cruzi , Humanos , Trypanosoma cruzi/genética , Trypanosoma cruzi/química , Antígenos de Protozoários/genética , Doença de Chagas/diagnóstico , Doença de Chagas/parasitologia , Epitopos/genética , Ensaio de Imunoadsorção Enzimática , Peptídeos
14.
Vet Immunol Immunopathol ; 269: 110729, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38377627

RESUMO

Bovine tuberculosis (bTB), which is caused by Mycobacterium bovis, is a single health concern, which causes economic losses, is a sanitary barrier and is a zoonotic concern. The golden-pattern intradermic tests have low sensitivity of about 50%. To fix this sensitivity problem, immunoassays could be a powerful tool. However, few studies produced antigens for bTB immunoassays, which needs improvements. Aim of this study was to produce multiepitope chimeric antigens (MCA) to use for bTB diagnosis. To achieve MCA design and development, extensive bibliographic search, antigenic epitope prediction, specificity, hydrophobicity, and 3D structure modeling analyses were performed, as well as cloning, expression and purification. Seven epitopes from four different target proteins (MPB-70, MPB-83, ESAT-6 and GroEL) were combined in five chimeras containing five repetitions of each epitope to enhance antibodies affinity. 3D predicted models revealed that all chimeras have a high percentage of disorder, which could enhance antibody recognition, although taking to protein instability. Each chimera was cloned into pET28a (+) expression plasmids and expressed in six Escherichia coli expression strains. Chimeras 3, 4 and 5 could be solubilized in 8 M urea and purified by ion exchange affinity chromatography. Against bTB positive and negative sera, purified chimera 5 had the best results in indirect dot blot and ELISA, as well as in lateral flow dot blot immunoassay. In conclusion, chimera 5, an MPB-83 containing MCA, could be used for further studies, aimed to develop a serologic or rapid test for bTB diagnosis.


Assuntos
Doenças dos Bovinos , Tuberculose Bovina , Animais , Bovinos , Tuberculose Bovina/diagnóstico , Antígenos de Bactérias/genética , Proteínas de Bactérias/genética , Testes Sorológicos/veterinária , Ensaio de Imunoadsorção Enzimática/veterinária , Ensaio de Imunoadsorção Enzimática/métodos , Epitopos/genética , Biologia Computacional , Sensibilidade e Especificidade , Proteínas Recombinantes
15.
Cancer Res Commun ; 4(1): 253-263, 2024 01 31.
Artigo em Inglês | MEDLINE | ID: mdl-38197671

RESUMO

The biomarker CA125, a peptide epitope located in several tandem repeats of the mucin MUC16, is the gold standard for monitoring regression and recurrence of high-grade serous ovarian cancer in response to therapy. However, the CA125 epitope along with several structural features of the MUC16 molecule are ill defined. One central aspect still unresolved is the number of tandem repeats in MUC16 and how many of these repeats contain the CA125 epitope. Studies from the early 2000s assembled short DNA reads to estimate that MUC16 contained 63 repeats.Here, we conduct Nanopore long-read sequencing of MUC16 transcripts from three primary ovarian tumors and established cell lines (OVCAR3, OVCAR5, and Kuramochi) for a more exhaustive and accurate estimation and sequencing of the MUC16 tandem repeats.The consensus sequence derived from these six sources was confirmed by proteomics validation and agrees with recent additions to the NCBI database. We propose a model of MUC16 containing 19-not 63-tandem repeats. In addition, we predict the structure of the tandem repeat domain using the deep learning algorithm, AlphaFold.The predicted structure displays an SEA domain and unstructured linker region rich in proline, serine, and threonine residues in all 19 tandem repeats. These studies now pave the way for a detailed characterization of the CA125 epitope. Sequencing and modeling of the MUC16 tandem repeats along with their glycoproteomic characterization, currently underway in our laboratories, will help identify novel epitopes in the MUC16 molecule that improve on the sensitivity and clinical utility of the current CA125 assay. SIGNIFICANCE: Despite its crucial role in clinical management of ovarian cancer, the exact molecular sequence and structure of the biomarker, CA125, are not defined. Here, we combine long-read sequencing, mass spectrometry, and in silico modeling to provide the foundational dataset for a more complete characterization of the CA125 epitope.


Assuntos
Neoplasias Ovarianas , Humanos , Feminino , Neoplasias Ovarianas/diagnóstico , Biomarcadores Tumorais/genética , Proteínas de Membrana/genética , Apoptose , Linhagem Celular Tumoral , Antígeno Ca-125/genética , Epitopos/genética , Modelos Moleculares
16.
J Med Virol ; 96(2): e29416, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38285457

RESUMO

The raising of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants led to the use of COVID-19 bivalent vaccines, which include antigens of the wild-type (WT) virus, and of the Omicron strain. In this study, we aimed to evaluate the impact of bivalent vaccination on the neutralizing antibody (NAb) response. We enrolled 93 volunteers who had received three or four doses of monovalent vaccines based on the original virus (n = 61), or a booster shot with the bivalent vaccine (n = 32). Serum samples collected from volunteers were subjected to neutralization assays using the WT SARS-CoV-2, and Omicron subvariants. In addition, immunoinformatics to quantify and localize highly conserved NAb epitopes were performed. As main result, we observed that the neutralization titers of samples from individuals vaccinated with the bivalent vaccine were higher for the original virus, in comparison to their capacity of neutralizing the Omicron variant and its subvariants. NAb that recognize epitopes mostly conserved in the WT SARS-CoV-2 were boosted, while those that recognize epitopes mostly present in the Omicron variant, and subvariants were primed. These results indicate that formulation of future vaccines shall consider to target present viruses, and not viruses that no longer circulate.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2/genética , Vacinação , Imunização Secundária , Anticorpos Neutralizantes , Epitopos/genética , Vacinas Combinadas
17.
Nat Commun ; 15(1): 842, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38287016

RESUMO

The constant emergence of SARS-CoV-2 variants continues to impair the efficacy of existing neutralizing antibodies, especially XBB.1.5 and EG.5, which showed exceptional immune evasion properties. Here, we identify a highly conserved neutralizing epitope targeted by a broad-spectrum neutralizing antibody BA7535, which demonstrates high neutralization potency against not only previous variants, such as Alpha, Beta, Gamma, Delta and Omicron BA.1-BA.5, but also more recently emerged Omicron subvariants, including BF.7, CH.1.1, XBB.1, XBB.1.5, XBB.1.9.1, EG.5. Structural analysis of the Omicron Spike trimer with BA7535-Fab using cryo-EM indicates that BA7535 recognizes a highly conserved cryptic receptor-binding domain (RBD) epitope, avoiding most of the mutational hot spots in RBD. Furthermore, structural simulation based on the interaction of BA7535-Fab/RBD complexes dissects the broadly neutralizing effect of BA7535 against latest variants. Therapeutic and prophylactic treatment with BA7535 alone or in combination with BA7208 protected female mice from the circulating Omicron BA.5 and XBB.1 variant infection, suggesting the highly conserved neutralizing epitope serves as a potential target for developing highly potent therapeutic antibodies and vaccines.


Assuntos
COVID-19 , Feminino , Animais , Humanos , Camundongos , SARS-CoV-2/genética , Anticorpos Neutralizantes , Anticorpos Amplamente Neutralizantes , Epitopos/genética , Anticorpos Antivirais , Glicoproteína da Espícula de Coronavírus/genética
18.
mBio ; 15(2): e0304823, 2024 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-38193697

RESUMO

Antibodies targeting an envelope dimer epitope (EDE) cross-neutralize Zika virus (ZIKV) and dengue virus (DENV) and have thus inspired an epitope-focused vaccine design. There are two EDE antibody subclasses (EDE1, EDE2) distinguished by their dependence on viral envelope protein N-linked glycosylation at position N153 (DENV) or N154 (ZIKV) for binding. Here, we determined how envelope glycosylation site mutations affect neutralization by EDE and other broadly neutralizing antibodies. Consistent with structural studies, mutations abolishing the N153/N154 glycosylation site increased DENV and ZIKV sensitivity to neutralization by EDE1 antibodies. Surprisingly, despite their location at predicted contact sites, these mutations also increased sensitivity to EDE2 antibodies. Moreover, despite preserving the glycosylation site motif (N-X-S/T), substituting the threonine at ZIKV envelope residue 156 with a serine resulted in loss of glycan occupancy accompanied with increased neutralization sensitivity to EDE antibodies. For DENV, the presence of a serine instead of a threonine at envelope residue 155 retained glycan occupancy, but nonetheless increased sensitivity to EDE antibodies, in some cases to a similar extent as mutation at N153, which abolishes glycosylation. Envelope glycosylation site mutations also increased ZIKV and DENV sensitivity to other non-EDE broadly neutralizing antibodies, but had limited effects on ZIKV- or DENV-specific antibodies. Thus, envelope protein glycosylation is context-dependent and modulates the potency of broadly neutralizing antibodies in a manner not predicted by existing structures. Manipulating envelope protein glycosylation could be a novel strategy for engineering vaccine antigens to elicit antibodies that broadly neutralize ZIKV and DENV.IMPORTANCEAntibodies that potently cross-neutralize Zika (ZIKV) and dengue (DENV) viruses are attractive to induce via vaccination to protect against these co-circulating flaviviruses. Structural studies have shown that viral envelope protein glycosylation is important for binding by one class of these so-called broadly neutralizing antibodies, but less is known about its effect on neutralization. Here, we investigated how envelope protein glycosylation site mutations impact the potency of broadly neutralizing antibodies against ZIKV and DENV. We found that glycan occupancy was not always predicted by an intact N-X-S/T sequence motif. Moreover, envelope protein glycosylation site mutations alter the potency of broadly neutralizing antibodies in a manner unexpected from their predicted binding mechanism as determined by existing structures. We therefore highlight the complex role and determinants of envelope protein glycosylation that should be considered in the design of vaccine antigens to elicit broadly neutralizing antibodies.


Assuntos
Vírus da Dengue , Dengue , Flavivirus , Vacinas , Infecção por Zika virus , Zika virus , Humanos , Anticorpos Amplamente Neutralizantes , Glicosilação , Anticorpos Neutralizantes , Vírus da Dengue/genética , Proteínas do Envelope Viral/química , Anticorpos Antivirais , Epitopos/genética , Mutação , Polissacarídeos , Serina/genética , Treonina/genética
19.
Proc Natl Acad Sci U S A ; 121(4): e2308942121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38241441

RESUMO

In the Antibody Mediated Prevention (AMP) trials (HVTN 704/HPTN 085 and HVTN 703/HPTN 081), prevention efficacy (PE) of the monoclonal broadly neutralizing antibody (bnAb) VRC01 (vs. placebo) against HIV-1 acquisition diagnosis varied according to the HIV-1 Envelope (Env) neutralization sensitivity to VRC01, as measured by 80% inhibitory concentration (IC80). Here, we performed a genotypic sieve analysis, a complementary approach to gaining insight into correlates of protection that assesses how PE varies with HIV-1 sequence features. We analyzed HIV-1 Env amino acid (AA) sequences from the earliest available HIV-1 RNA-positive plasma samples from AMP participants diagnosed with HIV-1 and identified Env sequence features that associated with PE. The strongest Env AA sequence correlate in both trials was VRC01 epitope distance that quantifies the divergence of the VRC01 epitope in an acquired HIV-1 isolate from the VRC01 epitope of reference HIV-1 strains that were most sensitive to VRC01-mediated neutralization. In HVTN 704/HPTN 085, the Env sequence-based predicted probability that VRC01 IC80 against the acquired isolate exceeded 1 µg/mL also significantly associated with PE. In HVTN 703/HPTN 081, a physicochemical-weighted Hamming distance across 50 VRC01 binding-associated Env AA positions of the acquired isolate from the most VRC01-sensitive HIV-1 strain significantly associated with PE. These results suggest that incorporating mutation scoring by BLOSUM62 and weighting by the strength of interactions at AA positions in the epitope:VRC01 interface can optimize performance of an Env sequence-based biomarker of VRC01 prevention efficacy. Future work could determine whether these results extend to other bnAbs and bnAb combinations.


Assuntos
Infecções por HIV , Soropositividade para HIV , HIV-1 , Humanos , Anticorpos Amplamente Neutralizantes , Anticorpos Neutralizantes , Anticorpos Anti-HIV , Epitopos/genética
20.
Gene ; 896: 148024, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38040271

RESUMO

Granulomatosis with polyangiitis (GPA) is a rare systemic autoimmune disease. Major contributions of HLA genes have been reported; however, HLA typing-based diagnosis or risk prediction in GPA has not been established. We have performed a sequencing-based HLA genotyping in a north Indian GPA cohort and controls to identify clinically relevant novel associations. PR3-ANCA-positive 40 GPA patients and 40 healthy controls from north India were recruited for the study. Targeted sequencing of HLA-A,-B,-C,-DRB1,-DQB1, and -DPB1 was performed. Allelic and haplotypic associations were tested. Molecular docking of susceptibility HLA alleles with reported super-antigen epitopes was performed. The association of substituted amino acids located at the antigen-binding domain of HLA was evaluated. Genetic association of five HLA-alleles was identified in GPA. The novel association was identified for C*15:02 (p = 0.04; OR = 0.27(0.09-0.88)). The strongest association was observed for DPB1*04:01 (p < 0.0001; OR = 6.2(3.08-11.71)), previously reported in European studies. 35 of 40 GPA subjects had at least one DPB1*04:01 allele, and its significant risk was previously not reported from the Indian population. Significantly associated haplotypes DRB1*03:01-DQB1*02:01-DPB1*04:01 (p = 0.02; OR = 3.46(1.11-12.75)) and DRB1*07:01-DQB1*02:02-DPB1*04:01 (p = 0.04; OR = 3.35(0.95-14.84)) were the most frequent in GPA patients. Ranging from 89 % to 100 % of GPA patients with organ involvement can be explained by at least one DPB1*04:01 allele. A strong interaction between the HLA and three epitopes of the reported super antigen TSST-1 of Staphylococcus aureus was confirmed. Our study highlighted the potential applicability of HLA typing for screening and diagnosis of GPA. A large multi-centric study and genotype-phenotype correlation analysis among GPA patients will enable the establishment of HLA-typing based GPA diagnosis.


Assuntos
Anticorpos Anticitoplasma de Neutrófilos , Granulomatose com Poliangiite , Cadeias beta de HLA-DP , Humanos , Alelos , Anticorpos Anticitoplasma de Neutrófilos/genética , Relevância Clínica , Epitopos/genética , Frequência do Gene , Granulomatose com Poliangiite/genética , Haplótipos , Cadeias beta de HLA-DP/genética , Cadeias beta de HLA-DQ/genética , Cadeias HLA-DRB1/genética , Simulação de Acoplamento Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...